大連理工大學(xué)導(dǎo)師:徐天星

發(fā)布時間:2021-11-20 編輯:考研派小莉 推薦訪問:
大連理工大學(xué)導(dǎo)師:徐天星

大連理工大學(xué)導(dǎo)師:徐天星內(nèi)容如下,更多考研資訊請關(guān)注我們網(wǎng)站的更新!敬請收藏本站,或下載我們的考研派APP和考研派微信公眾號(里面有非常多的免費考研資源可以領(lǐng)取,有各種考研問題,也可直接加我們網(wǎng)站上的研究生學(xué)姐微信,全程免費答疑,助各位考研一臂之力,爭取早日考上理想中的研究生院校。)

大連理工大學(xué)導(dǎo)師:徐天星 正文

[導(dǎo)師姓名]
徐天星

[所屬院校]
大連理工大學(xué)

[基本信息]
導(dǎo)師姓名:徐天星
性別:男
人氣指數(shù):705
所屬院校:大連理工大學(xué)
所屬院系:
職稱:工程師
導(dǎo)師類型:
招生專業(yè):

[通訊方式]
電子郵件:biandian@dlut.edu.cn,xtx@dlut.edu.cn

[個人簡述]
1978年至1993年間續(xù)在北京大學(xué)學(xué)習(xí),獲學(xué)士學(xué)位,碩士學(xué)位和博士學(xué)位。1993年在大連理工大學(xué)做博士后研究工作。在1995年8月出站前夕破格直接晉升為教授,并任工程力學(xué)研究所副所長。擔(dān)任多個高校的客座教授和科學(xué)院研究所的客座研究員。
曾任國家211立項專家組成員;國家博士點基金評審專家組成員;教育部高??萍吉勗u審專家組成員;國家博士點、碩士點及重點學(xué)科評審專家;省力學(xué)學(xué)會流體力學(xué)專業(yè)委員會主任。曾獲得香港CroucherFoundation;中國“國氏”博士后獎勵基金(中國優(yōu)秀博士后,1/10);“全國優(yōu)秀博士后人員”稱號。承擔(dān)國家級研究項目十余項,發(fā)表學(xué)術(shù)論文二百余篇,此外專著,專利和軟件著作權(quán)多項。
以培養(yǎng)多名國際聯(lián)合培養(yǎng)研究生,并作為大連理工大學(xué)和香港城市大學(xué)博士研究生聯(lián)合培養(yǎng)的聯(lián)絡(luò)人。
研究領(lǐng)域涉及新的科學(xué)理論,數(shù)值方法和計算方法,實驗方法,工程應(yīng)用等。主要研究成果包括:
?1、現(xiàn)代力學(xué)工具和方法研究
完善現(xiàn)代力學(xué)先進的工具,即哈密頓體系。利用對偶的觀點描述基本問題,將哈密頓體系方法推廣到更廣泛的領(lǐng)域。并建立系列的數(shù)值計算方法。該方法已經(jīng)在工程中得到了應(yīng)用。
?2、結(jié)構(gòu)穩(wěn)定性和動力屈曲
建立結(jié)構(gòu)穩(wěn)定性和動力屈曲問題的控制方程。計算和分析梁板殼等典型工程結(jié)構(gòu)的穩(wěn)定性,臨界載荷,屈曲模態(tài)和后屈曲發(fā)展路徑等。為結(jié)構(gòu)的輕型化及發(fā)展和應(yīng)用提供依據(jù)。
?3、斷裂力學(xué)中的辛方法
在彈性斷裂問題中,采用辛體系方法,將問題歸結(jié)為辛本征值和辛本征解問題。這樣,表征斷裂的標(biāo)志量應(yīng)力強度因子(J積分或能量釋放率)可直接解析表示出來。從而進一步構(gòu)造奇異元,克服了有限元計算軟件中網(wǎng)格和路徑依賴。該方法已經(jīng)應(yīng)用于核主泵工程中。
?4、辛離散有限元算法
借助于辛體系中的辛本征解,構(gòu)造出一種辛離散有限元算法。該方法的特點在于,將有限元中的節(jié)點位移由辛本征解系數(shù)代替,從而在保證精度的前提下減少計算量并可以與有限元軟件兼容。
?5、納米表面技術(shù)與吸能結(jié)構(gòu)和裝置的優(yōu)化設(shè)計與研發(fā)
首次提出將納米表面技術(shù)應(yīng)用于吸能結(jié)構(gòu)和裝置。利用納米表面技術(shù)誘導(dǎo)薄壁結(jié)構(gòu)的屈曲模態(tài),提高該結(jié)構(gòu)的吸能效果,降低最大沖擊載荷。提出一種新的吸能結(jié)構(gòu)和裝置設(shè)計原理與研發(fā)技術(shù)。該技術(shù)特別在汽車工業(yè)中有重要的應(yīng)用。
?6、納米表面化結(jié)構(gòu)抗屈曲設(shè)計技術(shù)
借助于局部納米表面技術(shù),采用優(yōu)化設(shè)計的方法對整體結(jié)構(gòu)局部表面納米化,通過局部表面納米化布局改變材料和結(jié)構(gòu)的力學(xué)性能的分布,從而提高結(jié)構(gòu)的抗屈曲能力。該技術(shù)可應(yīng)用于航空飛行器及火箭等方面設(shè)計和工藝。
?7、納米表面化結(jié)構(gòu)抗疲勞和斷裂優(yōu)化設(shè)計
通過優(yōu)化設(shè)計的方法對整體結(jié)構(gòu)局部表面納米化布局設(shè)計。通過特殊的局部表面納米化圖案布局改變結(jié)構(gòu)的應(yīng)力和應(yīng)變分布,以增強結(jié)構(gòu)的抗疲勞和抗斷裂特性。此技術(shù)在輕型結(jié)構(gòu)的應(yīng)用中有非常大的空間。
?8、深海石油管道失穩(wěn)問題的可靠性分析
研究了深海石油管道失穩(wěn)的主要因素和機理。采用蒙特卡洛隨機抽樣的方法和響應(yīng)面的方法對樣本進行處理,通過數(shù)值計算完成可靠性分析。研究方法為類似問題提供一條解決途徑。
?9、微納米結(jié)構(gòu)的動力學(xué)分析
采用非局部理論和哈密頓體系,建立一種描述微納米結(jié)構(gòu)動力學(xué)控制方程。研究和分析了碳納米管和石墨烯等結(jié)構(gòu)的動力學(xué)特性,發(fā)現(xiàn)了一些新的現(xiàn)象。為微納米結(jié)構(gòu)的應(yīng)用提供了依據(jù)。
?10、光纖識別裂紋和結(jié)構(gòu)健康測試技術(shù)
采用先進的光纖信息技術(shù),建立識別結(jié)構(gòu)裂紋和缺陷測試方法以及結(jié)構(gòu)健康監(jiān)測技術(shù)。其原理是通過光纖反映的結(jié)構(gòu)應(yīng)變場信息和結(jié)構(gòu)應(yīng)變場分析數(shù)據(jù),得到結(jié)構(gòu)裂紋和缺陷的準(zhǔn)確信息。并編制具有自主版權(quán)的分析軟件。
?11、表面納米化仿生材料優(yōu)化設(shè)計技術(shù)
分析貝殼材料結(jié)構(gòu)功能和機理,并通過局部表面納米化布局實現(xiàn)仿貝殼材料結(jié)構(gòu)的功能,采用優(yōu)化設(shè)計的方法設(shè)計出最優(yōu)的局部表面納米化布局圖案和仿生材料結(jié)構(gòu)。這種結(jié)構(gòu)具有優(yōu)良的抗疲勞和抗斷裂功能,也為有廣泛應(yīng)用的仿生材料的設(shè)計提供一種新的方法和技術(shù)。
發(fā)表主要學(xué)術(shù)論文
[1].WangMZ,XuXS,AgeneralizationofAlmansi'stheoremanditsapplication,Appl.Math.Modelling,1990,14(5):275-279
[2].XuXS,WangMZ,1991,GeneralcompletesolutionsoftheequationsofspatialandaxisymmetricStokesflow,Q.JI.Mech.Appl.Math.,1991,44(4):537-548
[3].XuXS,WangMZ,OnthecompletenessofsolutionsofthegeneralizedaxisymmetricStokesflowequations,ActaMathematicaScientia,1993,13(4):222-228
[4].XuXS,SuXY,YuTX,Thepropagationoflongitudinalwaveinrate-dependentplasticsofteningmaterial,SinenceinChina(Ser.A),1994,37(4):450-458
[5].WangW,XuXS,WangMZ,Completenessofgeneralsolutionstoaxisymmetricproblemsoftransverelyisotropicbody,SinenceinChina(Ser.A),1994,37(5):580-596
[6].XuXS,SuXY,WangR,Dynamicbucklingofelastic-plasticcylindricalshellsonaxialstresswaves,SinenceinChina(Ser.A),1995,38(4):472-479
[7].XuXS,ZhongWX,LuYL,StudyofnonlinearlongwaveapproximationinuniformchannelsviaHamiltonianstructure,J.Hydrodynamics,(Ser.B),1995,7(1):66-76
[8]Zhong,WX,XuXS,ZhangHW,HamiltonsystemandtheSaint-Venantprobleminelasticity,Appl.Math.Mech.,1996,17(9):827-836
[9]XuXS,ZhongWX,ZhangHW,TheSaint-Venantproblemandprincipleinelasticity,Int.J.SolidsStructures,1997,34(22):2815-2827
[10]XuXS,XuJY,LiuST,LiuKX,Dynamicaxisymmetricandnon-axisymmetricbucklingoffinitecylindricalshellsinpropagtingangreflectingofaxialstresswaves,J.PhysivFrance,1997,7,C3-617-C3-622
[11]XuXS,YuTX,SuXY,Propagationofwaveinrate-dependentplasticsofteningrodandbeam,J.EngineeringMechanics,1997,123(3):190-195
[12]XuXS,GuoXL,Atheoreticalandexperimentalstudyonthenonlinearshallowwaterwaveincontainers,J.ExperimentalMechanics,2002,16(3):298-304
[13]XuXS,GuoXL,AmethodofHamiltonianformulationforelasticstructuralvibrationinrotatingsystem,J.VibrationEngineering,2003,16(1):36-40
[14]GuQ,XuXS,LeungAYT,TheapplicationofHamiltoniansystemfortwo-dimensionaltransverselyisotropicpiezoelectricmedia.JournalofZhejiangUniversity,Science.2005,6(9):915-921
[15]XuXS,GuQ,LeungAYT,ZhenJJ,Asymplecticeigensolutionmethodintransverselyisotropicpiezoelectriccylindricalmedia.JournalofZhejiangUniversity,Science.2005,6(9):922-927
[16]WangGP,XuXS,Stokesflowinlid-drivencavitiesviaHamiltoniansystem,JournalofJilinUniversity(EngineeringandTechnologyEdition),2006,36:102-106
[17]XuXS,ZhangWX,LiX,Anapplicationofthesymplecticsystemintwo-dimensionalviscoelasticity,InternationalJournalofEngineeringScience,2006,44:897–914
[18]XuXS,MaY,LimCW,ChuHJDynamicbucklingofcylindricalshellssubjecttoanaxialimpactinasymplecticsystem.InternationalJournalofSolidsandStructures,200643:3905–3919
[19]LeungAYT,XuXS.Theboundarylayerphenomenaintwo-dimensionaltransverselyisotropicpiezoelectricmediabyexactsymplecticexpansion,Int.J.Numer.Meth.Engng2007;69:2381–2408
[20]XuXS,DuanZ,MaY,ChuHJ.Asymplecticmethodanddynamicbucklingofelasticcylindricalshellsunderbothaxialimpactandinternalorexternalpressure,Explosionandshockwaves,2007,27(6):509-514
[21]XuXS,WangGP,SunFM.AanalyticalandnumericalmethodofsymplecticsystemforStokesflowinthetwo-dimensionalrectangulardomain.AppliedMathematicsandMechanics,2008,29(6):715-724
[22]XuXS,LeungAYT,GuQ,3Dsymplecticexpansionforpiezoelectricmedia,InternationalJournalforNumericalMethodsinEngineering,2008,74:1848–1871
[23]XuXS,ChuHJ,LimCW.Hamiltoniansystemfordynamicbucklingoftransverselyisotropiccylindricalshellssubjecttoanaxialimpact.InternationalJournalofStructureandDynamics,2008,2(3):487-504
[24]SunFM,XuXS,TheControlMechanismofaNewFish-LikeUnderwaterRobotwithTwoTails,LectureNotesinComputerScience,2008,LNAI5314(1)304–313
[25]ZhangWX,XuXS,Hamiltoniansystemand2Dproblemofthermo-viscoelasticity.JournalofUniversityofScienceandTechnologyofChina,2008,38(2):200-206
[26]LeungAYT,XuXS,ZhouZH,WuYF,Analyticstressintensityfactorsforfiniteelasticdiscusingsymplecticexpansion.EngineeringFractureMechanics.2009;76(12):1866-1882
[27]XuXS,MaJQ,LimCW,ChuHJ.Dynamiclocalandglobalbucklingofcylindricalshellsunderaxialimpact.EngineeringStructures,2009,31(5):1132-1140
[28]XuXS,ChuHJ,LimCW.AsymplecyicHamiltonianappoachforthermalbucklingofcylindricalshells.InternationalJournalofStructuralStabilityandDynamics,2010,10(2):273-286
[29]XuXS,ZhouZH,LeungAYT.Analyticalstressintensityfactorsforedge-crackedcylinder.InternationalJournalofMechanicalSciences,2010,52:892–903
[30]XuXS,MaJQ,LimCW,ZhangG.Dynamictorsionalbucklingofcylindricalshells.ComputersandStructures,2010,88:322–330
[31]LeungAYT,XuXS,ZhouZH.Hamiltonianapproachtoanalyticalthermalstressintensityfactors—Part1:thermalintensityfactor.JournalofThermalStresses,2010,33:262–278
[32]LeungAYT,XuXS,ZhouZH.Hamiltonianapproachtoanalyticalthermalstressintensityfactors—Paret2:thermalstressintensityfactor.JournalofThermalStresses,2010,33:279–301
[33]ZhouZH,XuXS,LeungAYT.ModeIIIedge-crackinmagneto-electro-elasticmediabysymplecticexpansion.EngineeringFractureMechanics,2010,77:3157–3173
[34]ZhangWX,XuXS,YuanF.Thesymplecticsystemmethodinthestressanalysisof2Delasto-viscoelasticfiberreinforcedcomposites.ArchApplMech,2010,80:829-841
[35]ZhouZH,WongKW,XuXS,LeungAYT.NaturalvibrationofcircularandannularthinplatesbyHamiltonianapproach.JournalofSoundandVibration,2010,330:1005–1017
[36]SunFM,BianYN,ArimaH,IkegamiY,XuXS.Strengthcharacteristicsoftheself-sustainedwaveingroovedchannelswithdifferentgroovelength.HeatMassTransfer,2010,46:1229–1237
[37]LimCW,XuXS.SymplecticElasticity:TheoryandApplications.AppliedMechanicsReviews.2010,63/050802-1-050802-10
[38]ZhouZH,XuXSandLeungAYT.AnalyticalModeIIIelectromagneticpermeablecracksinmagnetoelectroelasticmaterials.Computers&Structures,2011,89:631-645
[39]ZhouZH,XuXS,LeungAYT.TransientthermalstressintensityfactorsforModeIedge-cracks.NuclearEngineeringandDesign.2011,241:3613-3623
[40]XuXS,ZhangG,ZengQC,ChuHJ,BambooNode-TypeLocalBucklingofCylindricalShellsUnderAxialImpact.AdvancesinVibrationEngineering,2011,10(1):41-52
[41]ZhouZH,WongKW,XuXS,LeungAYT.NaturalvibrationofcircularandannularthinplatesbyHamiltonianapproach.JournalofSoundandVibration.2011,330(5):1005-1017
[42]SunJB,XuXS,LimCW.DynamicBucklingofCylindricalshellsunderAxialImpactinHamiltonianSystem.Int.J.NonlinearSci.Numer.Simul,2012(13):93-97.
[43]ZhangWX,XuXS,Thesymplecticapproachfortwo-dimensionalthermo-viscoelasticanalysis,InternationalJournalofEngineeringScience2012,50:56-69
[44]WuYF,XuXS,SunJB,JiangC.Analyticalsolutionforthebondstrengthofexternallybondedreinforcement.CompositeStructures.2012,94:3232-3239
[45]DongJZ,XuXS,ZhangY.NonlinearWavesDrivenbyMotionalPlatesinShallowTwo-LayerFluid.AdvncesinVibrationEngineering,2012,11(4):389-402
[46]XuXS,SunJB,LimCW,DynamictorsionalbucklingofcylindricalshellsinHamiltoniansystem,Thin-WalledStructures64(2013)23-30
[47]SunJB,XuXS,LimCW,TanVBC.Anenergyconservativesymplecticmethodologyforbucklingofcylindricalshellsunderaxialcompression,ActaMech,224(2013),1579-1592
[48]SunJB,XuXS,LimCW.Localizationofdynamicbucklingpatternsofcylindricalshellsunderaxialimpact,InternationalJournalofMechanicalSciences66(2013)101-108
[49]ZhouZH,XuXS,LeungAYT,HuangY.StressintensityfactorsandT-stressforanedgeinterfacecrackbysymplecticexpansion.EngineeringFractureMechanics102(2013)334-347
[50]SunJB,XuXS,LimCW.Accuratesymplecticspacesolutionsforthermalbucklingoffunctionallygradedcylindricalshells.Composites:PartB55(2013)208-214
[51]SunJB,XuXS,LimCW.Torsionalbucklingoffunctionallygradedcylindricalshellswithtemperature-dependentproperties.InternationalJournalofStructuralStabilityandDynamics,2014,14(1):1350048-1–23.
[52]ZhouZH,XuXS,LeungAYT.Thefiniteelementdiscretizedsymplecticmethodforinterfacecracks,CompositesPartB,2014,58:335–342.
[53]SunJB,XuXS,LimCW.Bucklingoffunctionallygradedcylindricalshellsundercombinedthermalandcompressiveloads.JournalofThermalStresses,2014,37:340-362
[54]SunJB,XuXS,LimCW.BucklingofcylindricalshellsunderexternalpressureinaHamiltoniansystem.JournalofTheoreticalandAppliedMechanics.2014,52(3):641-653
[55]LeungAYT,ZhouZH,XuXS,Determinationofstressintensityfactorsbythefiniteelementdiscretizedsymplecticmethod,InternationalJournalofSolidsandStructures,2014,51,1115-1122.
[56]ZhouZH,AYTLeung,XuXS,LuoXW,Mixed-modethermalstressintensityfactorsfromthefiniteelementdiscretizedsymplecticmethod,InternationalJournalofSolidsandStructures,2014,51(21):3798-3806.
[57]XuCH,ZhouZH,XuXS,LeungAYT,FractureanalysisofmodeIIIcrackproblemsforthepiezoelectricbimorph,ArchiveofAppliedMechanics,2014,84(7),1057-1079.
[58]JiabinSun,XinshengXu,C.W.Lim,WeiyuQiao.AccuratebucklinganalysisforsheardeformableFGMcylindricalshellsunderaxialcompressionandthermalloads.CompositeStructures,2015,123:246-256
[59]XuXS,ChengXH,ZhouZH,XuCH,Ananalyticalapproachforthemixed-modecrackinlinearviscoelasticmedia,EuropeanJournalofMechanicsA/Solids,2015,52:12-25
[60]XuCH,ZhouZH,XuXS,Electroelasticsingularitiesandintensityfactorsforaninterfacecrackinpiezoelectric-elasticbimaterials,AppliedMathematicalModelling.2015,39:2721-2739
[61]ZhouZH,XuCH,XuXS,LeungAYT,Thefiniteelementdiscretizedsymplecticmethodforthesteady-stateheatconductionwithsingularitiesincompositestructures,NumericalHeatTransfer,PartB:Fundamentals.2015,67:302-319
[62]XuCH,ZhouZH,LeungAYT,XuXS,LuoXW.ThefiniteelementdiscretizedsymplecticmethodforcompositemodeIIIcracks.EngineeringFractureMechanics.2015,140:43-60
[63]XuCH,ZhouZH,XuXS,EvaluationofmodeIIIinterfacecracksinmagnetoelectroelasticbimaterialsbysymplecticexpansion,Journalofintelligentmaterialsystemsandstructures,2015,26(11):1417-1441
[64]SunJB,LimCW,XuXS,MaoH.Accuratebucklingsolutionsofgrid-stiffenedfunctionallygradedcylindricalshellsundercompressiveandthermalloads.CompositesPartB,2016,89:96-107
[65]SunJB,LimCW,ZhouZH,XuXS,SunW.Rigorousbucklinganalysisofsize-dependentfunctionallygradedcylindricalnanoshells,JournalofAppliedPhysics,119,214303(2016)
[66]SunJB,XuXS,LimCW,ZhouZH,XiaoSY,Accuratethermo-electro-mechanicalbucklingofsheardeformablepiezoelectricfiber-reinforcedcompositecylindricalshells,CompositeStruct.,141,221-231,2016.
[67]QiuWB,ZhouZH,XuXS,Thedynamicbehaviorofcircularplatesunderimpactloads,JournalofVibrationEngineeringandTechnologies,2016,4(2):111-116
[68]SunJB,XuXS,LimCW,Combinedloadbucklingforcylindricalshellsbasedonasymplecticelasticityapproach,JournalofTheoreticalandAppliedMechanics,2016,54(3):705-716
[69]XuW,TongZZ,LeungAYT,XuXS,ZhouZH,EvaluationofthestresssingularityofaninterfaceV-notchinabimaterialplateunderbending,EngineeringFractureMechanics,2016,168:11-25
[70]HuJL,XuXS.Fast-startcontrolofbionicfishusinggiantmagnetostrictivematerials.JournalofVibrationEngineering&Technologies,2017,5(2):207-211
[71]XuXS,TongZZ,RongDL,ChengXH,XuCH,ZhouZH.Fractureanalysisofmagnetoelectroelasticbimaterialswithimperfectinterfacesbysymplecticexpansion,AppliedMathematicsandMechanics,2017,38(8):1043-1058.

[科研工作]
研究領(lǐng)域涉及新的科學(xué)理論,數(shù)值方法和計算方法,實驗方法,工程應(yīng)用等。主要研究成果包括:
1、現(xiàn)代力學(xué)工具和方法研究
完善現(xiàn)代力學(xué)先進的工具,即哈密頓體系。利用對偶的觀點描述基本問題,將哈密頓體系方法推廣到更廣泛的領(lǐng)域。并建立系列的數(shù)值計算方法。該方法已經(jīng)在工程中得到了應(yīng)用。
2、結(jié)構(gòu)穩(wěn)定性和動力屈曲
建立結(jié)構(gòu)穩(wěn)定性和動力屈曲問題的控制方程。計算和分析梁板殼等典型工程結(jié)構(gòu)的穩(wěn)定性,臨界載荷,屈曲模態(tài)和后屈曲發(fā)展路徑等。為結(jié)構(gòu)的輕型化及發(fā)展和應(yīng)用提供依據(jù)。
3、斷裂力學(xué)中的辛方法
在彈性斷裂問題中,采用辛體系方法,將問題歸結(jié)為辛本征值和辛本征解問題。這樣,表征斷裂的標(biāo)志量應(yīng)力強度因子(J積分或能量釋放率)可直接解析表示出來。從而進一步構(gòu)造奇異元,克服了有限元計算軟件中網(wǎng)格和路徑依賴。該方法已經(jīng)應(yīng)用于核主泵工程中。
4、辛離散有限元算法
借助于辛體系中的辛本征解,構(gòu)造出一種辛離散有限元算法。該方法的特點在于,將有限元中的節(jié)點位移由辛本征解系數(shù)代替,從而在保證精度的前提下減少計算量并可以與有限元軟件兼容。
5、納米表面技術(shù)與吸能結(jié)構(gòu)和裝置的優(yōu)化設(shè)計與研發(fā)
首次提出將納米表面技術(shù)應(yīng)用于吸能結(jié)構(gòu)和裝置。利用納米表面技術(shù)誘導(dǎo)薄壁結(jié)構(gòu)的屈曲模態(tài),提高該結(jié)構(gòu)的吸能效果,降低最大沖擊載荷。提出一種新的吸能結(jié)構(gòu)和裝置設(shè)計原理與研發(fā)技術(shù)。該技術(shù)特別在汽車工業(yè)中有重要的應(yīng)用。
6、納米表面化結(jié)構(gòu)抗屈曲設(shè)計技術(shù)
借助于局部納米表面技術(shù),采用優(yōu)化設(shè)計的方法對整體結(jié)構(gòu)局部表面納米化,通過局部表面納米化布局改變材料和結(jié)構(gòu)的力學(xué)性能的分布,從而提高結(jié)構(gòu)的抗屈曲能力。該技術(shù)可應(yīng)用于航空飛行器及火箭等方面設(shè)計和工藝。
7、納米表面化結(jié)構(gòu)抗疲勞和斷裂優(yōu)化設(shè)計
通過優(yōu)化設(shè)計的方法對整體結(jié)構(gòu)局部表面納米化布局設(shè)計。通過特殊的局部表面納米化圖案布局改變結(jié)構(gòu)的應(yīng)力和應(yīng)變分布,以增強結(jié)構(gòu)的抗疲勞和抗斷裂特性。此技術(shù)在輕型結(jié)構(gòu)的應(yīng)用中有非常大的空間。
8、深海石油管道失穩(wěn)問題的可靠性分析
研究了深海石油管道失穩(wěn)的主要因素和機理。采用蒙特卡洛隨機抽樣的方法和響應(yīng)面的方法對樣本進行處理,通過數(shù)值計算完成可靠性分析。研究方法為類似問題提供一條解決途徑。
9、微納米結(jié)構(gòu)的動力學(xué)分析
采用非局部理論和哈密頓體系,建立一種描述微納米結(jié)構(gòu)動力學(xué)控制方程。研究和分析了碳納米管和石墨烯等結(jié)構(gòu)的動力學(xué)特性,發(fā)現(xiàn)了一些新的現(xiàn)象。為微納米結(jié)構(gòu)的應(yīng)用提供了依據(jù)。
10、光纖識別裂紋和結(jié)構(gòu)健康測試技術(shù)
采用先進的光纖信息技術(shù),建立識別結(jié)構(gòu)裂紋和缺陷測試方法以及結(jié)構(gòu)健康監(jiān)測技術(shù)。其原理是通過光纖反映的結(jié)構(gòu)應(yīng)變場信息和結(jié)構(gòu)應(yīng)變場分析數(shù)據(jù),得到結(jié)構(gòu)裂紋和缺陷的準(zhǔn)確信息。并編制具有自主版權(quán)的分析軟件。
11、表面納米化仿生材料優(yōu)化設(shè)計技術(shù)
分析貝殼材料結(jié)構(gòu)功能和機理,并通過局部表面納米化布局實現(xiàn)仿貝殼材料結(jié)構(gòu)的功能,采用優(yōu)化設(shè)計的方法設(shè)計出最優(yōu)的局部表面納米化布局圖案和仿生材料結(jié)構(gòu)。這種結(jié)構(gòu)具有優(yōu)良的抗疲勞和抗斷裂功能,也為有廣泛應(yīng)用的仿生材料的設(shè)計提供一種新的方法和技術(shù)。
發(fā)表主要學(xué)術(shù)論文
[1].WangMZ,XuXS,AgeneralizationofAlmansi'stheoremanditsapplication,Appl.Math.Modelling,1990,14(5):275-279
[2].XuXS,WangMZ,1991,GeneralcompletesolutionsoftheequationsofspatialandaxisymmetricStokesflow,Q.JI.Mech.Appl.Math.,1991,44(4):537-548
[3].XuXS,WangMZ,OnthecompletenessofsolutionsofthegeneralizedaxisymmetricStokesflowequations,ActaMathematicaScientia,1993,13(4):222-228
[4].XuXS,SuXY,YuTX,Thepropagationoflongitudinalwaveinrate-dependentplasticsofteningmaterial,SinenceinChina(Ser.A),1994,37(4):450-458
[5].WangW,XuXS,WangMZ,Completenessofgeneralsolutionstoaxisymmetricproblemsoftransverelyisotropicbody,SinenceinChina(Ser.A),1994,37(5):580-596
[6].XuXS,SuXY,WangR,Dynamicbucklingofelastic-plasticcylindricalshellsonaxialstresswaves,SinenceinChina(Ser.A),1995,38(4):472-479
[7].XuXS,ZhongWX,LuYL,StudyofnonlinearlongwaveapproximationinuniformchannelsviaHamiltonianstructure,J.Hydrodynamics,(Ser.B),1995,7(1):66-76
[8]Zhong,WX,XuXS,ZhangHW,HamiltonsystemandtheSaint-Venantprobleminelasticity,Appl.Math.Mech.,1996,17(9):827-836
[9]XuXS,ZhongWX,ZhangHW,TheSaint-Venantproblemandprincipleinelasticity,Int.J.SolidsStructures,1997,34(22):2815-2827
[10]XuXS,XuJY,LiuST,LiuKX,Dynamicaxisymmetricandnon-axisymmetricbucklingoffinitecylindricalshellsinpropagtingangreflectingofaxialstresswaves,J.PhysivFrance,1997,7,C3-617-C3-622
[11]XuXS,YuTX,SuXY,Propagationofwaveinrate-dependentplasticsofteningrodandbeam,J.EngineeringMechanics,1997,123(3):190-195
[12]XuXS,GuoXL,Atheoreticalandexperimentalstudyonthenonlinearshallowwaterwaveincontainers,J.ExperimentalMechanics,2002,16(3):298-304
[13]XuXS,GuoXL,AmethodofHamiltonianformulationforelasticstructuralvibrationinrotatingsystem,J.VibrationEngineering,2003,16(1):36-40
[14]GuQ,XuXS,LeungAYT,TheapplicationofHamiltoniansystemfortwo-dimensionaltransverselyisotropicpiezoelectricmedia.JournalofZhejiangUniversity,Science.2005,6(9):915-921
[15]XuXS,GuQ,LeungAYT,ZhenJJ,Asymplecticeigensolutionmethodintransverselyisotropicpiezoelectriccylindricalmedia.JournalofZhejiangUniversity,Science.2005,6(9):922-927
[16]WangGP,XuXS,Stokesflowinlid-drivencavitiesviaHamiltoniansystem,JournalofJilinUniversity(EngineeringandTechnologyEdition),2006,36:102-106
[17]XuXS,ZhangWX,LiX,Anapplicationofthesymplecticsystemintwo-dimensionalviscoelasticity,InternationalJournalofEngineeringScience,2006,44:897–914
[18]XuXS,MaY,LimCW,ChuHJDynamicbucklingofcylindricalshellssubjecttoanaxialimpactinasymplecticsystem.InternationalJournalofSolidsandStructures,200643:3905–3919
[19]LeungAYT,XuXS.Theboundarylayerphenomenaintwo-dimensionaltransverselyisotropicpiezoelectricmediabyexactsymplecticexpansion,Int.J.Numer.Meth.Engng200769:2381–2408
[20]XuXS,DuanZ,MaY,ChuHJ.Asymplecticmethodanddynamicbucklingofelasticcylindricalshellsunderbothaxialimpactandinternalorexternalpressure,Explosionandshockwaves,2007,27(6):509-514
[21]XuXS,WangGP,SunFM.AanalyticalandnumericalmethodofsymplecticsystemforStokesflowinthetwo-dimensionalrectangulardomain.AppliedMathematicsandMechanics,2008,29(6):715-724
[22]XuXS,LeungAYT,GuQ,3Dsymplecticexpansionforpiezoelectricmedia,InternationalJournalforNumericalMethodsinEngineering,2008,74:1848–1871
[23]XuXS,ChuHJ,LimCW.Hamiltoniansystemfordynamicbucklingoftransverselyisotropiccylindricalshellssubjecttoanaxialimpact.InternationalJournalofStructureandDynamics,2008,2(3):487-504
[24]SunFM,XuXS,TheControlMechanismofaNewFish-LikeUnderwaterRobotwithTwoTails,LectureNotesinComputerScience,2008,LNAI5314(1)304–313
[25]ZhangWX,XuXS,Hamiltoniansystemand2Dproblemofthermo-viscoelasticity.JournalofUniversityofScienceandTechnologyofChina,2008,38(2):200-206
[26]LeungAYT,XuXS,ZhouZH,WuYF,Analyticstressintensityfactorsforfiniteelasticdiscusingsymplecticexpansion.EngineeringFractureMechanics.200976(12):1866-1882
[27]XuXS,MaJQ,LimCW,ChuHJ.Dynamiclocalandglobalbucklingofcylindricalshellsunderaxialimpact.EngineeringStructures,2009,31(5):1132-1140
[28]XuXS,ChuHJ,LimCW.AsymplecyicHamiltonianappoachforthermalbucklingofcylindricalshells.InternationalJournalofStructuralStabilityandDynamics,2010,10(2):273-286
[29]XuXS,ZhouZH,LeungAYT.Analyticalstressintensityfactorsforedge-crackedcylinder.InternationalJournalofMechanicalSciences,2010,52:892–903
[30]XuXS,MaJQ,LimCW,ZhangG.Dynamictorsionalbucklingofcylindricalshells.ComputersandStructures,2010,88:322–330
[31]LeungAYT,XuXS,ZhouZH.Hamiltonianapproachtoanalyticalthermalstressintensityfactors—Part1:thermalintensityfactor.JournalofThermalStresses,2010,33:262–278
[32]LeungAYT,XuXS,ZhouZH.Hamiltonianapproachtoanalyticalthermalstressintensityfactors—Paret2:thermalstressintensityfactor.JournalofThermalStresses,2010,33:279–301
[33]ZhouZH,XuXS,LeungAYT.ModeIIIedge-crackinmagneto-electro-elasticmediabysymplecticexpansion.EngineeringFractureMechanics,2010,77:3157–3173
[34]ZhangWX,XuXS,YuanF.Thesymplecticsystemmethodinthestressanalysisof2Delasto-viscoelasticfiberreinforcedcomposites.ArchApplMech,2010,80:829-841
[35]ZhouZH,WongKW,XuXS,LeungAYT.NaturalvibrationofcircularandannularthinplatesbyHamiltonianapproach.JournalofSoundandVibration,2010,330:1005–1017
[36]SunFM,BianYN,ArimaH,IkegamiY,XuXS.Strengthcharacteristicsoftheself-sustainedwaveingroovedchannelswithdifferentgroovelength.HeatMassTransfer,2010,46:1229–1237
[37]LimCW,XuXS.SymplecticElasticity:TheoryandApplications.AppliedMechanicsReviews.2010,63/050802-1-050802-10
[38]ZhouZH,XuXSandLeungAYT.AnalyticalModeIIIelectromagneticpermeablecracksinmagnetoelectroelasticmaterials.Computers&Structures,2011,89:631-645
[39]ZhouZH,XuXS,LeungAYT.TransientthermalstressintensityfactorsforModeIedge-cracks.NuclearEngineeringandDesign.2011,241:3613-3623
[40]XuXS,ZhangG,ZengQC,ChuHJ,BambooNode-TypeLocalBucklingofCylindricalShellsUnderAxialImpact.AdvancesinVibrationEngineering,2011,10(1):41-52
[41]ZhouZH,WongKW,XuXS,LeungAYT.NaturalvibrationofcircularandannularthinplatesbyHamiltonianapproach.JournalofSoundandVibration.2011,330(5):1005-1017
[42]SunJB,XuXS,LimCW.DynamicBucklingofCylindricalshellsunderAxialImpactinHamiltonianSystem.Int.J.NonlinearSci.Numer.Simul,2012(13):93-97.
[43]ZhangWX,XuXS,Thesymplecticapproachfortwo-dimensionalthermo-viscoelasticanalysis,InternationalJournalofEngineeringScience2012,50:56-69
[44]WuYF,XuXS,SunJB,JiangC.Analyticalsolutionforthebondstrengthofexternallybondedreinforcement.CompositeStructures.2012,94:3232-3239
[45]DongJZ,XuXS,ZhangY.NonlinearWavesDrivenbyMotionalPlatesinShallowTwo-LayerFluid.AdvncesinVibrationEngineering,2012,11(4):389-402
[46]XuXS,SunJB,LimCW,DynamictorsionalbucklingofcylindricalshellsinHamiltoniansystem,Thin-WalledStructures64(2013)23-30
[47]SunJB,XuXS,LimCW,TanVBC.Anenergyconservativesymplecticmethodologyforbucklingofcylindricalshellsunderaxialcompression,ActaMech,224(2013),1579-1592
[48]SunJB,XuXS,LimCW.Localizationofdynamicbucklingpatternsofcylindricalshellsunderaxialimpact,InternationalJournalofMechanicalSciences66(2013)101-108
[49]ZhouZH,XuXS,LeungAYT,HuangY.StressintensityfactorsandT-stressforanedgeinterfacecrackbysymplecticexpansion.EngineeringFractureMechanics102(2013)334-347
[50]SunJB,XuXS,LimCW.Accuratesymplecticspacesolutionsforthermalbucklingoffunctionallygradedcylindricalshells.Composites:PartB55(2013)208-214
[51]SunJB,XuXS,LimCW.Torsionalbucklingoffunctionallygradedcylindricalshellswithtemperature-dependentproperties.InternationalJournalofStructuralStabilityandDynamics,2014,14(1):1350048-1–23.
[52]ZhouZH,XuXS,LeungAYT.Thefiniteelementdiscretizedsymplecticmethodforinterfacecracks,CompositesPartB,2014,58:335–342.
[53]SunJB,XuXS,LimCW.Bucklingoffunctionallygradedcylindricalshellsundercombinedthermalandcompressiveloads.JournalofThermalStresses,2014,37:340-362
[54]SunJB,XuXS,LimCW.BucklingofcylindricalshellsunderexternalpressureinaHamiltoniansystem.JournalofTheoreticalandAppliedMechanics.2014,52(3):641-653
[55]LeungAYT,ZhouZH,XuXS,Determinationofstressintensityfactorsbythefiniteelementdiscretizedsymplecticmethod,InternationalJournalofSolidsandStructures,2014,51,1115-1122.
[56]ZhouZH,AYTLeung,XuXS,LuoXW,Mixed-modethermalstressintensityfactorsfromthefiniteelementdiscretizedsymplecticmethod,InternationalJournalofSolidsandStructures,2014,51(21):3798-3806.
[57]XuCH,ZhouZH,XuXS,LeungAYT,FractureanalysisofmodeIIIcrackproblemsforthepiezoelectricbimorph,ArchiveofAppliedMechanics,2014,84(7),1057-1079.
[58]JiabinSun,XinshengXu,C.W.Lim,WeiyuQiao.AccuratebucklinganalysisforsheardeformableFGMcylindricalshellsunderaxialcompressionandthermalloads.CompositeStructures,2015,123:246-256
[59]XuXS,ChengXH,ZhouZH,XuCH,Ananalyticalapproachforthemixed-modecrackinlinearviscoelasticmedia,EuropeanJournalofMechanicsA/Solids,2015,52:12-25
[60]XuCH,ZhouZH,XuXS,Electroelasticsingularitiesandintensityfactorsforaninterfacecrackinpiezoelectric-elasticbimaterials,AppliedMathematicalModelling.2015,39:2721-2739
[61]ZhouZH,XuCH,XuXS,LeungAYT,Thefiniteelementdiscretizedsymplecticmethodforthesteady-stateheatconductionwithsingularitiesincompositestructures,NumericalHeatTransfer,PartB:Fundamentals.2015,67:302-319
[62]XuCH,ZhouZH,LeungAYT,XuXS,LuoXW.ThefiniteelementdiscretizedsymplecticmethodforcompositemodeIIIcracks.EngineeringFractureMechanics.2015,140:43-60
[63]XuCH,ZhouZH,XuXS,EvaluationofmodeIIIinterfacecracksinmagnetoelectroelasticbimaterialsbysymplecticexpansion,Journalofintelligentmaterialsystemsandstructures,2015,26(11):1417-1441
[64]SunJB,LimCW,XuXS,MaoH.Accuratebucklingsolutionsofgrid-stiffenedfunctionallygradedcylindricalshellsundercompressiveandthermalloads.CompositesPartB,2016,89:96-107
[65]SunJB,LimCW,ZhouZH,XuXS,SunW.Rigorousbucklinganalysisofsize-dependentfunctionallygradedcylindricalnanoshells,JournalofAppliedPhysics,119,214303(2016)
[66]SunJB,XuXS,LimCW,ZhouZH,XiaoSY,Accuratethermo-electro-mechanicalbucklingofsheardeformablepiezoelectricfiber-reinforcedcompositecylindricalshells,CompositeStruct.,141,221-231,2016.
[67]QiuWB,ZhouZH,XuXS,Thedynamicbehaviorofcircularplatesunderimpactloads,JournalofVibrationEngineeringandTechnologies,2016,4(2):111-116
[68]SunJB,XuXS,LimCW,Combinedloadbucklingforcylindricalshellsbasedonasymplecticelasticityapproach,JournalofTheoreticalandAppliedMechanics,2016,54(3):705-716
[69]XuW,TongZZ,LeungAYT,XuXS,ZhouZH,EvaluationofthestresssingularityofaninterfaceV-notchinabimaterialplateunderbending,EngineeringFractureMechanics,2016,168:11-25
[70]HuJL,XuXS.Fast-startcontrolofbionicfishusinggiantmagnetostrictivematerials.JournalofVibrationEngineering&Technologies,2017,5(2):207-211
[71]XuXS,TongZZ,RongDL,ChengXH,XuCH,ZhouZH.Fractureanalysisofmagnetoelectroelasticbimaterialswithimperfectinterfacesbysymplecticexpansion,AppliedMathematicsandMechanics,2017,38(8):1043-1058.

[教育背景]
1992.11995.12大連廣播電視大學(xué)(自考)工業(yè)電氣自動化
大連理工大學(xué)

添加大連理工大學(xué)學(xué)姐微信,或微信搜索公眾號“考研派小站”,關(guān)注[考研派小站]微信公眾號,在考研派小站微信號輸入[大連理工大學(xué)考研分?jǐn)?shù)線、大連理工大學(xué)報錄比、大連理工大學(xué)考研群、大連理工大學(xué)學(xué)姐微信、大連理工大學(xué)考研真題、大連理工大學(xué)專業(yè)目錄、大連理工大學(xué)排名、大連理工大學(xué)保研、大連理工大學(xué)公眾號、大連理工大學(xué)研究生招生)]即可在手機上查看相對應(yīng)大連理工大學(xué)考研信息或資源

大連理工大學(xué)考研公眾號 考研派小站公眾號

本文來源:http://alternativeofficeassistance.com/dalianligongdaxue/daoshi_520366.html

推薦閱讀