桂林電子科技大學電子工程與自動化學院、數(shù)學與計算科學學院導(dǎo)師:彭振赟
桂林電子科技大學電子工程與自動化學院、數(shù)學與計算科學學院導(dǎo)師:彭振赟內(nèi)容如下,更多考研資訊請關(guān)注我們網(wǎng)站的更新!敬請收藏本站,或下載我們的考研派APP和考研派微信公眾號(里面有非常多的免費考研資源可以領(lǐng)取,有各種考研問題,也可直接加我們網(wǎng)站上的研究生學姐微信,全程免費答疑,助各位考研一臂之力,爭取早日考上理想中的研究生院校。)
微信,為你答疑,送資源
桂林電子科技大學電子工程與自動化學院、數(shù)學與計算科學學院導(dǎo)師:彭振赟 正文
[導(dǎo)師姓名]彭振赟
[所屬院校]
桂林電子科技大學
[基本信息]
導(dǎo)師姓名:彭振赟
性別:
人氣指數(shù):1668
所屬院校:桂林電子科技大學
所屬院系:電子工程與自動化學院、數(shù)學與計算科學學院
職稱:教授
導(dǎo)師類型:碩導(dǎo)/博導(dǎo)
招生專業(yè):數(shù)學、生物醫(yī)學信息檢測與儀器
研究領(lǐng)域:科學與工程計算、最優(yōu)化理論、動力系統(tǒng)模型修正
[通訊方式]
電子郵件:yunzhenp@163.com
[個人簡述]
彭振赟,男, 教授,博士,博士后,博士生導(dǎo)師。1985年6月畢業(yè)于婁底師范高等??茖W校,獲數(shù)學教育專業(yè)??茖W歷。1991年6月畢業(yè)于湖南教育學院,獲數(shù)學教育專業(yè)本科學歷。1999年6月畢業(yè)于湖南大學畢業(yè),獲計算數(shù)學碩士學位。2003 年6月畢業(yè)于湖南大學,獲計算數(shù)學博士學位;2006 年6月從中南大學博士后流動站出站。2010 年3 月至2011 年3 月在加拿大New Brunswick 大學做高級訪問學者。中國計算數(shù)學學會理事,廣西數(shù)學學會常務(wù)理事,桂林電子科技大學計算數(shù)學學科學術(shù)帶頭人。2005年9月獲教授職稱資格,2011年獲得博士生導(dǎo)師資格。主持完成國家自然科學基金項目2項,主持完成省部級項目5項。發(fā)表學術(shù)論文50多篇,其中SCI檢索30余篇。2003年獲婁底市政府第二屆青年科技獎。2013年獲廣西區(qū)自然學獎三等獎.。
[科研工作]
[1] 彭振赟,胡錫炎,子空間上對稱矩陣反問題,湖南大學學報,2(2002), 5-9[2] 彭振赟, 矩陣方程ATXA=B的中心對稱解及其最佳逼近,長沙電力學院學報,2(2002),3-6.[3] 彭振赟,Jacobi矩陣逆特征問題存在唯一解的條件,數(shù)值計算及計算機應(yīng)用, 3 (2002),226-232[4] Zhen-yun Peng,Xi-yan Hu and? Lei Zhang, The inverse problem for part symmetric matrices on? a subspace,Journal of Computational Mathematics, 4(2003), 505-512。SCI檢索號:706XM[5] 彭振赟, ?線性矩陣方程AXB=C的中心對稱解及其最佳逼近, 工程數(shù)學學報, 6(2003),60-65[6] Zhen-yun Peng,Xi-yan Hu and? Lei Zhang, On the construction of a Jacobi matrix from its mixed-type eigenpairs, Linear Algebra and Its Applications, 362 (2003), 191-200。SCI檢索號:648MH[7] Zhen-yun Peng and Xi-yan Hu,The reflexive and anti-reflexive solutions of the matrix equation AX=B, Linear Algebra and Its Applications, 375(2003), 147-155。SCI檢索號:739JE[8]. ?Zhen-yun Peng, ?Least square solutions of matrix equation AXB=E over reflexive matrices X .The Sixth International Conference on Matrix Theory and its Applications in China. Heilongjiang Daxue Ziran Kexue Xuebao 21:4 (2004), 95–98.[9] Zhen-yun Peng and Xi-yan Hu,The Generalized Reflexive Solutions of the Matrix Equations AX=D and AXB=D, Numerical Mathematics A Journal of Chinese Universities English Series (supplement),12(2003),94-98[10] Ya-bo Chen, ?Yu-yuan Zhou, ?Zhen-yun Peng, ?A class of inverse problem for matrices on subspace. Natur. Sci. J. Xiangtan Univ.25(2003), no. 2,122–126.[11] 彭振赟,胡錫炎,張磊,對稱次反對稱矩陣的一類反問題,高等學校計算數(shù)學學報, 2(2003), 144-152[12] 彭振赟,? 一類可對稱化矩陣反問題的最小二乘解,? 數(shù)值計算及計算機應(yīng)用,? 3(2004),119-224[13] 彭振赟,矩陣方程 AXB=E 的最小二乘自反解(英文), ?黑龍江大學學報, 21:4(2004),95-98。[14] Zhen-yun Peng,Xi-yan Hu and? Lei Zhang, The inverse problem of bisymmetric matrices with a submatrix constraint, Numerical Linear Algebra with Applications, 1(2004), 59-73。SCI檢索號:771XQ[15] Zhen-yun Peng,Xi-yan Hu and Lei Zhang, The inverse problem of centrosymmetric matrices with a submatrix constraint, Journal of Computational Mathematics, 4(2004), 535-544。SCI檢索號:841AP[16] Zhen-yun Peng,Xi-yan Hu and? Lei Zhang, The nearest bisymmetric solutions of linear matrix equations, Journal of Computational Mathematics, 6(2004), 873-880。SCI檢索號:874KV[17]. ??Jinwang Liu, ?Jinjun Hou, Zhenyun Peng, ?Wensheng Cao, ?The universal Groebner basis under composition. J. Syst. Sci. Complex. 18:3 (2005), ?375–382. ???[18] Jin-Jun Hou, Zhenyun Peng, ?Xu-Li Han, ?The solvability conditions for the inverse problem of symmetrizable nonnegative definite matrices. JP J. Algebra Number Theory Appl. 5:1 (2005), 163–172.[19] 彭振赟,胡錫炎,張磊,雙對稱矩陣的一類反問題,計算數(shù)學,1(2005),11-18[20] Zhen-yun Peng and Xu-li Han, Constructing Jacobi matrices with prescribed ordered defective eigenpairs and a principal submatrix, Journal of Computational and Applied Mathematics, 175(2005), 321-333。SCI檢索號:881WF[21] Zhen-yun Peng,The Inverse eigenvalue Problem for Hermitian Anti-reflexive Matrices and Its Approximation, Applied Mathematics and Computation, 162:3(2005),1377-1389。SCI檢索號:895KL[22] Zhen-yun Peng,An iterative method for the least squares symmetric solution of the linear matrix equation AXB=C,? Applied Mathematics and Computation, ?170(2005),711-723。 SCI檢索號:979TR[23] Zhen-yun Peng, Yuan-bei Deng and Jin-wang Liu,Least-squares solutions of inverse problem for hermitian anti-reflexive matrices and its appoximation, Acta Mathematica Sinica, English Series, 22:2(2006), 477-484。SCI檢索號:020RK[24] Zhen-yun Peng and Ya-xin Peng,An iterative method for the matrix equation AXB+CYD=E, Numerical Linear? Algebra with Applications, 13(2006), 473-485。SCI檢索號:071XS[25] Jin-jun Hou,Zhen-yun Peng and Xiang-lin Zhang,An iterative method for the least squares symmetric solution of matrix equation AXB = C,Numerical Algorithms, 42(2006) , 181–192。SCI檢索號:078LR[26] Zhen-yun Peng, Salah M. El-Sayed and Xiang-lin Zhang, Iterative methods? for the extremal positive definite solution of the matrix equation X+A*X-aA=Q,Journal of Computational and Applied Mathematics,200(2007), 520-527。SCI檢索號:137FX[27] Zhen-yun Peng and Salah M. El-Sayed,On positive definite solution of a nonlinear matrix equation,Numerical Linear? Algebra with Applications, 14 (2007), 99-113。SCI檢索號:140UV[28] Zhen-yun Peng,Solutions of symmetry constrained least squares problems,Numerical Linear? Algebra with Applications, 15:4(2008), 373-389。SCI檢索號:305EQ[29] Zhen-yun Peng, The rank constrained symmetric solution of the matrix equation,???????? Advances in Matrix Theory and its Applications(Proceedings of the Eighth International Conference on Matrix Theory and Its Applications in China), 2008, 196-199.[30] Xuefeng Duan,Anping Liao, Zhenyun Peng,A fast reliable algorithm for solving the matrix X-A*XA=C,Proceedings 3rd International workshop on Matrix Analysis, Hangzhou P.R. China, July 9-13,2009, Vol.1, 98-101.[31] Xuefeng Duan,Zhenyun Peng,F(xiàn)ujian Duan, Positive definite solutions of two kinds of nonlinear matrix equations, Surveys in Mathematics and its Applications, 4(2009), 179-190.[32] 段雪峰,廖安平,彭振赟,矩陣方程 的正定解,工程數(shù)學學報,26:4(2009), 757-759.[33] Yabo Chen, Zhenyun Peng, Tiejun Zhou, LSQR iterative common symmetric solutions to matrix equations AXB?=?E and CXD?=?F, Applied Mathematics and Computation, 217(2010), 230-236. SCI檢索號:634KU??[34] Chunmei Li, Xuefeng Duan, Zhenyun Peng, Thompson Metric Method for solving a quadratic matrix equation, Proceedings the ninth International Conference on Matrix Theory and its Applications, Shanghai, China, July 18-22, 2010, Vol.1, 105-108.[35] Zhen-yun Peng,A matrix LSQR iterative method to solve matrix equation AXB=C,International Journal of Computer Mathematics,87(2010), 1820 – 1830。SCI檢索號:623ZC[36] Zhen-yun Peng,New matrix iterative methods for constraints solutions to matrix equation AXB=C,Journal of Computational and Applied Mathematics,235(2010),726-735。 SCI檢索號:657DY[37] Yangjun Ou, Zhenyun Peng, The solvability conditions for one kind of indefinite problems, Proceedings the ninth International Conference on Matrix Theory and its Applications, Shanghai, China, July 18-22, 14(2010), 142-145。[38] 郭斌,彭振赟,下三角矩陣逆奇異值問題的遞推算法,長沙大學學報,24:5(2010),7-8.[39] 俞麗彬,彭振赟,一類中心(反)對稱矩陣奇異值分解及其算法,桂林電子科技大學學報,30:4(2010),343-345.[40] 王文璞,彭振赟,一類矩陣不定問題有解的條件,計算機與自動化,29:3(2010),53-55.[41] 俞麗彬,彭振赟,一類矩陣方程及其最佳逼近,桂林電子科技大學學報,30:6(2010),609-613.[42] 李春梅,彭振赟,段雪峰,一類Toeplitz矩陣的平方根,桂林電子科技大學學報,31:1(2011),34-36.[43] Zhen-yun Peng, Lin Wang, Jing-jing Peng, The Solutions of Matrix Equation AX=B Over a Matrix Inequality Constraint, SIAM Journal on Matrix Analysis and Applications, 33:2(2012), ?554-568. SCI檢索號:968PP[44] Anbao Xu,Zhenyun Peng,Norm-constrained least-squares solutions to the matrix equation AXB=C,Proccedings of the seventh Workshop on matrices and Operators, Harbin, China,13-16 Huly,2012, 136-139.[45] Fangying Li,Jingjing Peng,Zhenyun Peng,The least squares stochatic solutions of the matrix equation AX=B,Proccedings of the seventh Workshop on matrices and Operators, Harbin, China,13-16 Huly,2012, 140-144.[46] Jingjing Peng,Zhenyun Peng,The symmetric solutions of the matrix inequality AX≥B in least-squares sense,International Journal of Computer Mathematics,3(2013),554-564. SCI檢索,檢索號:147QH?? No20[47] Fangying Li,Jingjing Peng,Zhenyun Peng,The least squares stochatic solutions of the matrix equation AX=B,Journal of Algebra Number Theory:Advances and Applications, 12:8(2012),19-39.[48] An-bao Xu,Zhenyun Peng, Norm-Constrained Least-Squares Solutions to the Matrix Equation AXB = C,Abstract and Applied Analysis,?Art. ID 781276,?DOI: 10.1155/2013/781276, 2013. ?SCI檢索,檢索號:194OQ? No21[48]、李姣芬,張曉寧,彭振赟,彭靖靜,基于交替投影算法求解單變量線性約束矩陣方程問題,計算數(shù)學,36:2(2014),143-162.[49]、李姣芬,彭振赟,彭靖靜,矩陣不等式約束下矩陣方程AX=B的雙對稱解,計算數(shù)學,35:2(2013),137-150.[50] 程可欣, 彭振赟, 杜丹丹, 肖憲偉, 矩陣方程 X ? ATX?1A = Q的牛頓迭代解法, 工程數(shù)學學報,1(2016),63-72.??? [51]Hongli Qu, Kexin Cheng, Zhenyun peng, Algorithms to compute the interval constrained solutions of the matrix AX=B, Far East Journal of Applied Mathematics, 89:1(2014),15-28.[52] Kexin Cheng,Hongli Qu, Zhenyun Peng, The interval constrained solutions of the matrix equation (AX,XB)=(C,D), JP Journal of Algebra, Number Theory and Applications, 35:1(2014),67-80.
[教育背景]
以上老師的信息來源于學校網(wǎng)站,如有更新或錯誤,請聯(lián)系我們進行更新或刪除,聯(lián)系方式
添加桂林電子科技大學學姐微信,或微信搜索公眾號“考研派小站”,關(guān)注[考研派小站]微信公眾號,在考研派小站微信號輸入[桂林電子科技大學考研分數(shù)線、桂林電子科技大學報錄比、桂林電子科技大學考研群、桂林電子科技大學學姐微信、桂林電子科技大學考研真題、桂林電子科技大學專業(yè)目錄、桂林電子科技大學排名、桂林電子科技大學保研、桂林電子科技大學公眾號、桂林電子科技大學研究生招生)]即可在手機上查看相對應(yīng)桂林電子科技大學考研信息或資源。
桂林電子科技大學
本文來源:http://alternativeofficeassistance.com/guilindianzikejidaxue/yanjiushengdaoshi_527800.html